Curious special function identities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Curious Bilateral q-Series Identities

By applying a classical method, already employed by Cauchy, to a terminating curious summation by one of the authors, a new curious bilateral q-series identity is derived. We also apply the same method to a quadratic summation by Gessel and Stanton, and to a cubic summation by Gasper, respectively, to derive a bilateral quadratic and a bilateral cubic summation formula.

متن کامل

Curious Relations and Identities Involving the Catalan Generating Function and Numbers

Riordan matrix methods and manipulation of various generating functions are used to find curious relations among the Catalan, central binomial, and RNA generating functions. In addition, the Wilf-Zeilberger method is used to find identities where the gamma function and Catalan numbers are expressed in terms of the Gauss hypergeometric function. As a consequence of the identities, new recurrence...

متن کامل

Partition Identities Arising from Theta Function Identities

The authors show that certain theta function identities of Schröter and Ramanujan imply elegant partition identities.

متن کامل

Special Identities for Quasi-jordan Algebras

Semispecial quasi-Jordan algebras (also called Jordan dialgebras) are defined by the polynomial identities a(bc) = a(cb), (ba)a = (ba)a, (b, a, c) = 2(b, a, c)a. These identities are satisfied by the product ab = a a b + b ` a in an associative dialgebra. We use computer algebra to show that every identity for this product in degree ≤ 7 is a consequence of the three identities in degree ≤ 4, bu...

متن کامل

A Study of a Curious Arithmetic Function

The purpose of this paper is to study the arithmetic function f : Z+ → Q ∗ + defined by f(2l) = l (∀k, l ∈ N, l odd). We have, for example, f(1) = 1, f(2) = 1, f(3) = 3, f(12) = 1 3 , f(40) = 1 25 , . . . , so it is clear that f(n) is not always an integer. However, we will show in what follows that f satisfies the property that the product of the f(r) for 1 ≤ r ≤ n is always an integer, and it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publikacije Elektrotehnickog fakulteta - serija: matematika

سال: 2007

ISSN: 0353-8893

DOI: 10.2298/petf0718022g